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Abstract

Because of the limited information from the GAW20 samples when only case-control or trio data are considered,
we propose eLBL, an extension of the Logistic Bayesian LASSO (least absolute shrinkage and selection operator)
methodology so that both types of data can be analyzed jointly in the hope of obtaining an increased statistical
power, especially for detecting association between rare haplotypes and complex diseases. The methodology is
further extended to account for familial correlation among the case-control individuals and the trios. A 2-step
analysis strategy was taken to first perform a genome-wise single single-nucleotide polymorphism (SNP) search
using the Monte Carlo pedigree disequilibrium test (MCPDT) to determine interesting regions for the Adult Treatment Panel
(ATP) binary trait. Then eLBL was applied to haplotype blocks covering the flagged SNPs in Step 1. Several significantly
associated haplotypes were identified; most are in blocks contained in protein coding genes that appear to be relevant for
metabolic syndrome. The results are further substantiated with a Type I error study and by an additional analysis using the
triglyceride measurements directly as a quantitative trait.

Background
As next-generation sequencing (NGS) technology be-
comes more accurate and affordable, many recent stud-
ies have focused on assessing associations between
common complex diseases and single-nucleotide vari-
ants (SNVs), paying particular attentions to those that
are rare. Various methods have been proposed, but most
can only achieve the identification of candidate genes or
regions. To narrow the list of potential causal variants, it
would be helpful to investigate haplotype blocks formed
by single-nucleotide polymorphisms (SNPs) in regions/
genes where associations are suggested but may not
necessarily be genome-wide significant. Apart from be-
ing able to identify biologically relevant variants,
haplotype-based methods can be more powerful than
SNV-based methods as multilocus genotypes contain

more information than single-locus genotypes, especially
when causal loci interact in cis, leading to disease eti-
ology [1]. If there are rare causal SNVs in a haplotype
block, then rare haplotypes can tag such causal variants,
a conclusion based on a simulation study [2]. More
importantly, rare haplotypes may be obtained from com-
mon SNPs, rendering NGS data unnecessary. The power
for detecting rare haplotype associations is further en-
hanced in a family-based study, as rare associated vari-
ants are enriched in families afflicted with the diseases
compared to population samples of independent cases
and controls of the same size. Currently, numerous
methods exist, including a class based on Logistic Bayes-
ian LASSO (LBL) for detecting associations of haplo-
types, common or rare, using either case control or
family-based data [1, 3].
The GAW20 Real Data Package provides a good op-

portunity to apply LBL to identify haplotypes that are
associated with metabolic syndrome. Specifically, we
consider the ATP binary trait derived from the measure-
ments taken at visit 2 (before drug intervention). Among
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the 188 pedigrees in the data set, only 17 contain
complete case–parent trios (ie, genotype information for
both parents and the child and phenotype status for the
child are all available), leading to a total of only 25 such
trios. In addition, we extracted 283 cases (ATP = 1) and
475 controls (ATP = 0) with available genotype informa-
tion. Because the number of trios is extremely small, it is
clear that there is insufficient power to detect haplotype
association using these data alone. However, their inclu-
sion may enhance detection power compared to when
only case-control data are used. Because the current
LBL methodology focuses on a single study design, we
propose eLBL, an extension of the LBL methodology to
combine case–control and case–parent trios data for a
joint analysis. Furthermore, because cases, controls, and
trios are all extracted from the same set of pedigrees,
there are intrinsic correlations. To account for such fa-
milial dependency, we have adopted a composite likeli-
hood adjustment approach.

Methods
Extension of the logistic Bayesian LASSO accounting for
familial dependency
Suppose we have n = n1 + n2 individuals, where n1 and
n2 are the numbers of cases and controls, respectively.
Let Y = (Y1, Y2,...,Yn), where Yi denotes the affection sta-
tus of the ith individual, with case = 1 and control = 0.
Let Z = (Z1, Z2,...,Zn), where Zi is the (unobserved haplo-
type pair) of individual i, while the observed genotype
matrix is denoted by G = (G1, G2,...,Gn), where Gi is the
genotype vector (over a set of SNPs) of the ith individ-
ual. We note that G contains information about Z, but
the mapping is typically many (haplotype pairs) to one
(vector of genotypes). The complete data (haplotype)
likelihood is

Lc ∅ð Þ ¼
Yn1

i¼1
P ZijY i ¼ 1;∅ð Þ

Yn

j¼n1þ1
P Z jjY j ¼ 0;∅
� �

ð1Þ
where the probabilities are specified, as elaborated
below, through a logit link function relating the odds of
disease to the haplotypes, and ∅ is a vector of parame-
ters including haplotype frequencies and coefficients of
the logistic regression model.
Suppose we also have m trios with each ascertained

through the offspring. Let Yic = 1 denote that the child is
a case. The haplotype configuration of the ith trio can
be written as Zi = (Zif, Zim, Zic), where the 3 components
denote the haplotype pair of the father, mother, and the
affected child, respectively. Under the assumption of al-
lelic exchangeability, this is equivalent to Zi = (Zic, Ziu),
where Ziu is the untransmitted haplotype pair from the
parents. Then, the haplotype-based likelihood for case–
parent trios is

Lf ∅ð Þ ¼
Ym

i¼1
P ZicjY ic ¼ 1;∅ð ÞP Ziuj∅ð Þ ð2Þ

where the probabilities and the parameter vector are
specified as in the case–control data. Putting eqs. (1)
and (2) together, we obtained the following composite
likelihood:

Lcf ∅ð Þ ¼ Lc ∅ð Þ � Lf ∅ð Þ ð3Þ
It is apparent from the description of the GAW20 data

given above that our data units are not independent, thus
the composite likelihood as specified in eq. (3) is not the
correct likelihood based on the observed data. However,
owing to the complex relationships among the extracted
cases, controls, and trios, it is difficult to formulate the cor-
rect likelihood. Fortunately, it is possible to obtain correct
inferences based on the misspecified composite likelihood
Lcf(∅) through appropriate adjustment [4]. Following the
“magnitude adjustment” algorithm [5], we denote H(∅) = −
E[∇2ℓcf(∅)]and J(∅) =Var[∇ℓcf(∅)], where ℓcf(∅)=log[Lcf(∅)] is
the log-composite likelihood, and ∇ and ∇2 are the
first-order and second-order derivatives, respectively. Let
λ1, λ2, ⋯, λpbe the eigenvalues of H(∅)−1J(∅); based on
them we form k ¼ p=

Pp
i¼1λi: Then the adjusted

log-likelihood

ℓ� ∅ð Þ ¼ kℓcf ∅ð Þ ð4Þ
is used for inference, as elaborated in the following
paragraph.
To specify the probabilities and elaborate on ∅, we as-

sume that, for any given individual in the study with
haplotype pair Z, we model the odds of the disease θZ =
P(Y = 1|Z)/P(Y = 0|Z) with a logistic model logθz = α +
XZβ, where XZ is the design vector corresponding to
haplotype pair Z, coded according to the assumed mode
of inheritance (eg, additive, recessive, dominant); β
= (β1,⋯, βK) (part of the collection of parameter vector
∅) is the regression coefficient vector with βj corre-
sponding to the effect of the jth variant on the log odds;
and α is the baseline effect (related to the phenocopy
rate). Note that if we assume an additive model, then the
jth variant is the jth haplotype, and the total number of
distinct haplotypes is K + 1. We cast the problem into a
Bayesian framework, where the adjusted likelihood in
eq. (4) is used for correct posterior inference [5]. The
detailed Markov chain Monte Carlo (MCMC) inference
procedure follows the original LBL methodology using
shrinkage priors to increase power for detecting rare
haplotypes [1, 3]; the adjustment factor k is updated in
each MCMC iteration. Convergence of the Markov
chain is assured based on commonly used diagnostic
tools. The posterior odds over the prior odds, namely
the Bayes factor (BF), is used to assess the significance
of the βjs. We have also constructed empirical posterior
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credible intervals (CIs) for the odds ratios (ORs). For
each haplotype, the OR is essentially the exponential of
the corresponding β in the logistic model given above. It
is estimated, together with the CIs, from the posterior
sample of the β values. Decision on the significance of a
haplotype is based on both BF (> 2) and CI (not includ-
ing the null value 1).

A 2-step analysis strategy
Because the proposed eLBL (extension of the Logistic
Bayesian LASSO [least absolute shrinkage and selection
operator]) methodology is based on an MCMC proced-
ure to sample from the posterior distribution, it is com-
putationally intensive, and thus not suitable for
whole-genome scan. Instead, we adopt the following
2-step strategy. In the first step, we use Monte Carlo
pedigree disequilibrium test (MCPDT) [6], a family-based
single-SNP association testing method, to scan 654,767
SNPs across the 22 autosomes. We excluded SNPs with
low minor allele frequencies (< 1%). MCPDT imputes
missing data and takes familial relationships into account;
consequently, it is viewed as using all information to the
maximum extent possible. In the second step, we formed
haplotype blocks around the SNPs selected from Step 1
using haploview [7]. We then applied eLBL to identify
haplotype(s) within each block that have a significant
influence on the ATP binary trait.

Results
Of the 654,767 SNPs considered, we selected the 10
SNPs with the smallest MCPDT p values for further ana-
lysis with eLBL. These 10 SNPs have p values close to
10− 4 or smaller (Table 1), with the 3 SNPs on chromo-
some 1 passing the threshold of genome-wide signifi-
cance at the 5% level after Bonferroni correction. To
increase the statistical power for detecting rare variants

and to potentially understand the causal mechanism in
downstream analysis, we applied eLBL to 9 haplotype
blocks that cover the SNPs displayed in Table 1. Note
that the first 2 SNPs on chromosome 1 belong to the
same haplotype block (block 1; Table 1). The remaining
8 SNPs were placed into 8 separate blocks labeled as
blocks 2 to 9 (Table 1).
The results from eLBL, presented in Table 2, show

that a number of haplotypes have an estimated CI of OR
not including 1 and a BF > 2, providing significant evi-
dence for association between the identified haplotypes
and the ATP trait. For instance, haplotype h11110 of
block 1, which contains the minor alleles of SNPs
rs10915052 and rs1406862 (occupying the first and
fourth positions, in bold in Table 2), is seen to have a
fairly significant evidence of association with a BF of 15.
That this haplotype contains the 2 minor alleles strongly
suggests that the 2 SNPs may very well interact in cis
and play a regulatory role for metabolic syndrome, as
the block is not located within the coding region of a
gene. As another example, 2 haplotypes in block 7, lo-
cated within the protein coding gene STARD13, are in-
ferred to be associated with ATP. This haplotype block
spans 10 SNPs, with SNP rs8001893 sitting at the last
position. For the haplotype containing the minor allele,
h1111111111, its effect is protective (OR < 1), which is
opposite of the effect of haplotype h1000000000 (OR > 1).
Both haplotypes are rare, especially the risk haplotype (fre-
quency < 0.001). Given its rarity and the large variability in
the estimate (reflected in the large upper bound of the CI
resulting from small frequency and only moderate sample
size), care needs to be taken in the interpretation of the
effect size. Nevertheless, the associated gene appears to be
relevant for the study of metabolic syndrome. Gene
Ontology annotations related to STARD13 include guano-
sine triphosphatase (GTPase) activator activity and lipid
binding. Finally, another protein coding gene, ABCC1,
which contains haplotype block 8, is also noteworthy, as it
also appears to be pertinent to metabolic syndrome.
Among its related pathways are vitamin digestion and
absorption, and metabolism.

Discussion and conclusions
Motivated by making maximum use of information
resulting from the limited sample sizes when only case–
control or trio data are considered, we propose eLBL, an
extension of the LBL methodology, so that both types of
data can be analyzed jointly to increase statistical power.
This new approach is further extended to adjust for fa-
milial correlations, leading to correct statistical inference
using dependent data. Our 2-step analysis strategy was
designed to increase statistical power. Indeed, by using all
available information, MCPDT identified 3 genome-wide
significant SNPs, which disappear when only observed

Table 1 Top 10 SNPs with the smallest p values as identified by
MCPDT

SNP Chr Position Allelea MAF P value Block

rs10915052 1 30,479,266 G/A 0.0104 2.59 × 10− 8 1

rs1406862 1 30,483,442 T/C 0.0109 3.48 × 10−8 1

rs16833496 1 30,509,960 G/A 0.0110 1.80 × 10−7 2

rs17086804 4 57,033,788 T/C 0.0597 1.22 × 10−4 3

rs2048091 8 19,003,646 A/C 0.3565 5.92 × 10−5 4

rs12281650 11 69,360,392 C/T 0.2665 9.48 × 10−5 5

rs7943255 11 124,450,756 G/A 0.0544 1.23 × 10−4 6

rs8001893 13 33,120,261 C/A 0.0171 6.24 × 10−6 7

rs35625 16 16,077,067 T/C 0.4123 1.15 × 10−4 8

rs966287 18 27,580,619 G/C 0.3285 8.95 × 10−5 9

MAF, minor allele frequency
aMinor allele is listed after the slash
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data are used (results not shown). On the other hand,
eLBL with shrinkage priors was able to recover haplotypes
(many are rare) that are associated with the ATP binary
trait. The associated genes harboring the haplotype blocks
studied all appear to be related to metabolic syndrome.
The increase in power is clearly seen as several of the as-
sociated haplotypes contain SNPs that do not pass
genome-wide significance. To further substantiate the gain
in power with the new eLBL approach, we performed an
analysis with only independent cases and controls using
the original LBL [1]. The results, as expected, are sensitive
to the selection of the independent samples, and miss
many of the haplotypes identified in Table 2. Simi-
larly, an analysis of 17 independent trios using
famLBL [2] reveals that the sample size is too small
to obtain interpretable results. With an increase in
power, the natural question is whether there is also
an increase in Type I error, as eLBL is a new method
and has not been studied thoroughly. To answer this
question, we performed a limited simulation study
wherein data from a null model was simulated. To
mimic the family dependent structure and the linkage
disequilibrium structure of the real data, we simulated
our data using the GAW20 families and the inferred
haplotypes with the estimated frequencies from block
8 to preserve linkage disequilibrium. Our results indi-
cate that there is no elevated Type I error. In the
contrary, eLBL is seen to be conservative for rare var-
iants. Nevertheless, for haplotypes with frequencies
greater than 0.05, the Type I error is as expected. To
further substantiate the results from eLBL, we also
analyzed the triglyceride level from visit 2 directly as
a quantitative trait using a variation of LBL [1], but
also accounting for the familial structures in the data.
Of the 4 protein coding genes, SRPT2, SLC37A2,
STARD13, and ABBC1, identified by eLBL, the quan-
titative analysis also identified associated haplotypes

in blocks contained within these genes. These results,
together with the Type I error study and the annotations
of the genes, affirm the results from eLBL, leading to our
conjecture that the haplotypes identified are potentially ei-
ther involved in the causal mechanism or playing a regula-
tory role in metabolic syndrome.
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Table 2 Significant haplotypes identified by eLBL; CI does not include 1 and BF > 2

Blocka Chr Gene Hapb Freq OR LBc UBc BF

B1 1 NA h11110 0.0103 0.2167 0.0482 0.7293 14.88

B3 4 SRP72 h00110011 0.0601 0.5195 0.3137 0.8374 9.66

B4 8 ncRNA h01000 0.1494 1.6192 1.1460 2.3157 7.36

B6 11 SLC37A2 h111000 0.0361 0.3751 0.1651 0.7630 18.64

B7 13 STARD13 h1000000000 0.0006 77.9239 1.7253 3085.8835 20.70

h1111111111 0.0164 0.2731 0.0814 0.7502 15.32

B8 16 ABCC1 h0101010 0.1663 0.7062 0.5272 0.9435 2.09
aThe SNPs contained in the haplotype blocks are as follows: B1: rs10915052 rs2377270 rs2205841 rs1406862 rs12410878; B3: rs6849183 rs11133443 rs17086804
rs11610 rs41476944 rs17086853 rs12649799 rs10015634 B4: rs10104096 rs2048091 rs13266438 rs10088192 rs13262422; B6: rs7943255 rs12289510 rs12276567
rs10893317 rs4936976 rs3808995; B7: rs9563616 rs7985396 rs9591912 rs8001801 rs7993044 rs9315232 rs10507413 rs9569943 rs7328696 rs8001893; B8: rs35621
rs35625 rs4148350 rs4148351 rs35628 rs4148353 rs35629
b“1” denotes the minor allele and the SNPs in Table 1 are in bold
cLB (lower bounds) and UB (upper bounds) of the odds ratio (OR), which make up the 95% credible interval (CI)
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