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Abstract

Background: Recent advances in next-generation sequencing technologies have made it possible to generate
large amounts of sequence data with rare variants in a cost-effective way. Yet, the statistical aspect of testing
disease association of rare variants is quite challenging as the typical assumptions fail to hold owing to low minor
allele frequency (<0.5 or 1 %).

Methods: I present a Bayesian variable selection approach to detect associations with both rare and common genetic
variants for quantitative traits simultaneously. In my model, I frame the problem of identifying disease-associated
variants as a problem of variable selection in a sparse space, that is, how best to model the relationship between
phenotypes and a set of genetic variants. By constructing a risk index score for a group of rare variants, my method
can effectively consider all variants in a multivariate model. I also use a within-chain permutation to generate the
empirical thresholds to detect true-positive variants.

Results: I apply our method to study the association between increases in baseline systolic and diastolic blood pressure
(SBP and DBP, respectively) and genetic variants in the data from Genetic Analysis Workshop 19 unrelated samples. I
identify several rare and common variants in the gene MAP4 that are potentially associated with SBP and DBP.

Conclusions: The application shows that my method is powerful in identifying disease-associated variants even with the
extreme rarity.
Background
With the advent of next-generation sequencing, rare var-
iants with a minor allele frequency (MAF) of less than 1
to approximately 5 % are getting more attention in
genome-wide association studies (GWAS) to account for
the “missing” heritability phenomenon [1]. Despite the
importance, testing for associations between rare vari-
ants and disease traits has proven challenging because
evaluating the potential impact of rare variants on dis-
ease is complicated by their uncommon nature of the
extreme rarity. Over the last few years, numerous
methods have been developed to address methodological
challenges in rare-variant association analysis. Notice-
ably, multimarker approaches have drawn much atten-
tion. Commonly used methods include the collapsing,
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simple-sum, and weighted-sum methods [2–5]. They
first collapse rare variants and then implement a LASSO
(least absolute shrinkage and selection operator) [6–8],
partial least squares regression (PLS) model [9], or other
supporting statistical methods using the common vari-
ants and the collapsed rare variants [10].
Although they offer a new way of looking at rare vari-

ants, simply pooling these variants may cancel the true
signal and, consequently, discard the possibility that
multiple rare variants affect phenotype in a different dir-
ection of being disease-promoter or disease-protective.
Because there is no clear cutoff distinguishing rare vari-
ants from common variants, statistical methods that can
analyze both rare and common variants simultaneously
are often preferable [5, 11, 12]. In this sense, variant as-
sociation tests can be best approached as a variable
selection problem when the main goal is to identify
causal variants [12–14]. There has been a parallel
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development of new statistical methods for detecting
rare variants in the Bayesian variable selection frame-
work [12, 15–18].
In the present study, I extend my previous study [19]

to the realm of rare variants in a Bayesian variable selec-
tion by incorporating a Bayesian risk index approach
[16, 17]. By using a risk index score on a group of rare
variants over the genomic region, I evaluate both rare
and common variants simultaneously. Inference of iden-
tifying disease-associated variants is done by estimating
marginal posterior probabilities of latent variables. I fur-
ther perform the within-chain permutation [18] by
adopting the idea of permuting the phenotype data in
determining the empirical thresholds with regard to true
and false signals.

Methods
Data
I apply my method to Genetics Analysis Workshop
(GAW) 19 unrelated data (n = 1934) that were carried
out as part of the T2days-GENES (Type 2 Diabetes Gen-
etic Exploration by Next-generation sequencing in
multi-Ethnic Samples) consortium to study the associ-
ation between blood pressure phenotypes and the single-
nucleotide polymorphisms. The phenotypes of interest
are real baseline diastolic blood pressure (DBP) and sys-
tolic blood pressure (SBP), which I consider as continu-
ous traits.

Model formulation
Suppose that a population-based association study con-
sists of n unrelated individuals. Let Y = (Y1,…, Yn)

T denote
the clinical quantitative outcome or response of interest
from n samples and X denote the n × p-dimensional geno-
type matrix of p variants in functional genomic regions.
Throughout this article, I assume that genetic variants are
independent and present no interaction effect. The model
I posit on the clinical outcome is

Y ¼ α0 þ Xβþ ε ð1Þ

where X is associated with the coefficients β. The error
terms ε = (ε1,…, εn) are assumed to be independent and
identically distributed N(0, σ2In) for the gaussian re-
sponses. I assume an additive genetic model; thus Xij = 0,
1, or 2, representing the number of minor alleles present
at variant j of individual i. Note that additive model and
dominant model are almost equivalent in rare variant
analysis.
Given this information, I use Bayesian model uncer-

tainty techniques in which an individual model is speci-
fied by the p-dimensional vector of binary indicators γ
= (γ1,…, γp). Each component γj = 1(0) indicates the in-
clusion (exclusion) of variant j. With a prespecified
MAF threshold of defining rare variants, I further as-
sume that the genotype matrix X is known to be parti-
tioned into G groups such as X = (X1,…, XG), where the
gth group, Xg contains kg rare variants (or 1 common
variant) for g = 1,…, G. Then I define the risk index score
as a linear function within the group as Gg = Xg*γg,
where Gg is a vector of length n that gives the risk index
for each individual and γg contains a vector of binary in-
dicators for a group of kg rare variants. Then X = (X1,…,
XG) becomes n × G-dimensional risk index matrix (G <
p). Equation (1) is rewritten in relating the quantitative
outcome variable to the risk index matrix by fitting the
model Y = β0 + Gβ + ε, where β = (β1,…, βG) is a vector of
group-specific coefficients.

Model likelihood and priors
Under the Bayesian method of estimation, computing
the degree to which any model represented by γ in
the model space M is supported by the data is
calculated via posterior model probabilities of the

form p Y γjð Þ ¼ p γð Þp Y γjð ÞX
γ∈M

p γð Þp Y γjð Þwhere the nominator

entails the multiplication of prior and likelihood
function by Bayes’ rule. To calculate the marginal
likelihood, I integrate out any dependency on the pa-
rameters β and σ, and use the following approxima-
tion in the likelihood function:

p Y γjð Þ ¼ ∬ f Y β; σ2; γ
��� �

f β; σ2
� �

⋅d β⋅dσ2≈p Y γ; bβ;bσ 2
���

� �

This approximation corresponds to assuming that all
of the prior mass of the model-specific parameters, θ -γ

= (β0, β, σ), is placed on the maximum likelihood esti-
mate (MLE). Given the approximation to the marginal
likelihood, I am left to define the prior distribution p(γ)
on the model space M. To do so, I assume that the
number of variants included (nonzero components) in a
chosen model γ is distributed as a binomial with π the
prior inclusion probability of each variant, where π con-
trols the average number of variants included in the
model. Hereafter π is referred to as a prior inclusion
probability (PIP). Then

p γð Þ ¼Πp

i¼1π
γi 1−πð Þ1−γi

Conditional upon a variant being included, setting π =
0.5 yields the uniform prior across the model space.
While this prior seems to be noninformative with re-
spect to the model space, it actually can be quite inform-
ative in that PIP can control the sparsity of the model by
assuming to be smaller.
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Model search using Markov chain Monte Carlo
Once the priors have been chosen, my key construct of
interest is the posterior of the p-dimensional vector of
binary indicators γ, which capture the association between
variants and the outcome. Markov chain Monte Carlo
(MCMC) can often be used to extract such information
by simulating an approximate sample from the posterior
distribution. Most popular are the Gibbs sampler (GS)
[20, 21] and the Metropolis-Hastings (MH) algorithms
[22, 23]. In this study, I use the MH algorithm to draw
samples from the posterior probability distribution from
the model space similarly as in Quintana et al. [16].
Marginal posterior quantities
I am interested in answering the question of which vari-
ant(s) is(are) most likely to derive the association with
phenotype. This question can be answered based on
marginal posterior probabilities. The marginal posterior
probability (MPP) for any γj can be calculated as the
sum of the posterior probabilities for every model that
includes the variable. This is then used as a measure of
the evidence of jth variant for association with phenotype
and the ranking of their MPPs as a measure of the rela-
tive importance. Variants whose MPPs exceed the PIP
are selected as being disease-associated, similarly as in
my previous study [19].
Decision rule based a permutation within Markov chain
Monte Carlo
Determining true- and false-positive signals in general
remains an open problem within Bayesian analysis.
Often Bayes factor [24] is considered to be a preferred
decision-making rule because it is free of the analyst’s
subjectivity and allows the strength of evidence provided
by the data in favor of a hypothesis to be evaluated on
the widely used empirical scale [25]. Although Bayes fac-
tor is a practical tool in a Bayesian context, it has been
argued to be sensitive to prior distributions and often
becomes computationally intensive in high-dimensional
data. However, the permutation test does provide a data-
driven decision rule and is conceptually easier to imple-
ment. It has been a universal tool in evaluating the
significance across various statistical methods. In this
study, I implement a permutation within MCMC by
adopting the idea of permuting the phenotype data,
which is used to determine empirical thresholds in iden-
tifying true-positive variants.
In detail, let y = {yj} be the vector of the original

phenotypes and y* = {yj*} be the randomly rearranged
(permuted) vector of phenotypes. For each iteration, 2
MCMC runs are conducted, one on p(γ|Y) and the
other on p(γ|Y*), to generate the empirical posterior
distributions under the null model. After variants are
screened from the comparison with the PIP, true-
positive variants are further identified by gauging their
MPPs against ones calculated from the permutation.
That is, variants whose MPPs exceed empirical MPPs
are declared to be true positives.

Results
I focused on the MAP4 gene in chromosome 3 that was
previously reported to be highly associated with blood
pressure [26]. The sequenced MAP4 gene had 409 vari-
ant sites. Of these, 324 variants were seen at allele fre-
quencies with 0 %. After eliminating 92 individuals with
missing data and singleton variants, 85 variants on 1851
unrelated individuals remained. Log-transformation of
the phenotype was performed to fix the skewing of the
phenotype distribution.
Any division of genetic variants into “common” and

“rare” is arbitrary. Although most association studies
often use a MAF threshold of 1 % for differentiating be-
tween a polymorphism and a mutation, this may not be
the optimal threshold for rare variant analysis [5]. I ex-
amined the sensitivity of my method to the classification
of variants by varying MAF thresholds from starting at
5 %. Choosing the PIP is straightforward. Because it con-
trols the sparsity of the model, a smaller value provides
smaller MPPs. Although estimated MPPs are sensitive to
the choice of the PIP, the ranking of MPPs is relatively
insensitive (data not shown), which was evaluated in my
previous work [19]. I fixed PIP as equaling 0.1, which
implies that, in expectation, 1 out of 10 variants are in-
cluded in the model.
For each MCMC run, the convergence of the search

was monitored. To see how stable the final estimates
were, multiple MCMC runs were also conducted with
different initial values and starting points. Convergence
of the estimates was checked by the test of convergence
diagnostics proposed by Geweke [27] and monitored
using the R package CODA.
The chains seemed to reach their target distribution

after 5000 or fewer iterations overall. I discarded the first
5000 iterations as a burn-in period. The chain was
thinned by keeping 1 observation out of 10 iterations to
reduce correlation until the posterior sample size
reached 5000. The total number of iterations was 5000
+ 5000 × 10 = 55,000. The remaining samples were used
to perform inference.
Figures 1 and 2 depict MPPs for a range of MAF thresh-

olds of defining rarity along with the names of variants
written on the X-axis that had constant peaks for associ-
ation with SBP and DBP, respectively. It is clearly shown
that candidate variants had strong evidence for association
with DBP (3_47956424, 3_48040283, 3_47908815,
3_47912308) and with SBP (3_48040283, 3_47956424,
3_47957996, 3_47908815, 3_47912407, 3_47913606,
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Fig. 2 Profiles of MPPs under various MAF thresholds for SBP phenotype in comparison with empirical MPPs (the black dotted-line)
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Fig. 1 Profiles of MPPs under various MAF thresholds for DBP phenotype in comparison with empirical MPPs (the black dotted-line)
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Table 2 True-positive variants in gene MAP4 ordered by MPPs
for association with SBP

Variant MAF Averaged MPPs Empirical MPPs

3_48040283 0.028049 0.6059 0.0140

3_47956424 0.343541 0.4082 0.0121

3_47957996 0.022903 0.4065 0.0050

3_47908815 0.000257 0.2553 0.0159

3_47912407 0.002573 0.2083 0.0100

3_47913606 0.000257 0.1485 0.0585

3_48016938 0.000257 0.1310 0.0410

3_47912736 0.000540 0.1106 0.0103

SNP single nucleotide polymorphism
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3_48016938), consistently exceeding PIP = 0.1, as well as
empirical MPPs (the dotted black line) across various MAF
thresholds. These remained as being true positives after
their averaged MPPs were evaluated against empirical
MPPs. On the other hand, among 6 variants whose MPPs
were slightly greater than PIP = 0.1, 4 variants (3_47912736,
3_47912407, 3_47957996, 3_48040284) remained to be true
positives for association with DBP, whereas the variant
(3_47912736) remained to be true positive for association
with SBP. The finally selected variants were ordered by
their averaged MPPs in Tables 1 and 2.

Discussion and conclusions
In this paper, I have applied the Bayesian variable selec-
tion approach to study the association between increases
in baseline SBP and DBP and genetic variants in the data
from GAW19. Although most of the statistical methods
designed for rare variant association tests can perform
global tests for the association between the region and
phenotypes as a result of the low frequencies of rare var-
iants, my method enables detection of not only rare vari-
ants, but also of common variants for their significance.
My method is highly flexible and allows for uncertainty
in estimating parameters in variant selection using the
Bayesian framework. The key to my approach is the use
of a risk index score and indicator parameters to detect
the variant-specific signals. The posterior distributions
of all parameters of interest are estimated via MCMC ef-
ficiently. I also implemented computationally advanta-
geous permutation within MCMC to calculate empirical
thresholds to determine true-positive variants. The de-
tection of disease-associated variants was not sensitive
to the MAF thresholds defining rare variants. The appli-
cation to the GAW19 data reveals that that some com-
mon variants and rare variants in the MAP4 gene are
associated with DBP and SBP.
In the application, I have focused on a binary case of

inclusion/exclusion of variants. However, my method
can be extended to investigate mixed effects (the pres-
ence of both protective and risk effects) within the
Table 1 True-positive variants in gene MAP4 ordered by MPPs
for association with DBP

Variant MAF Averaged MPPs Empirical MPPs

3_47956424 0.343541 0.6081 0.0136

3_48040283 0.028049 0.6059 0.0115

3_47908815 0.002573 0.5052 0.0049

3_47912308 0.000515 0.3059 0.0152

3_47912736 0.000257 0.1105 0.0099

3_47912407 0.000257 0.1083 0.0083

3_47957996 0.022903 0.1065 0.0065

3_48040284 0.006948 0.1051 0.0083
group of rare variants by further assuming γj = −1 if a
variant is a risk factor and γj = 1 if a protective factor as
in Quintana et al. [16]. This extension may be used to
uncover the direction of effects of the variants, but at
the cost of substantially increased computation time of
the algorithm.
Finally, the current study focused on the specific gene

regions. I anticipate that the computational challenges of
my method will grow substantially for genome-wide
searching of rare genetic variants. However, I believe
that the qualitative advantages of my approach make it
worth investing effort into designing more efficient
MCMC algorithms, so as to be able to better deal with
very large-scale applications. I leave this to future work.
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