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Abstract

Methods that can evaluate aggregate effects of rare and common variants are limited. Therefore, we applied a
two-stage approach to evaluate aggregate gene effects in the 1000 Genomes Project data, which contain 24,487
single-nucleotide polymorphisms (SNPs) in 697 unrelated individuals from 7 populations. In stage 1, we identified
potentially interesting genes (PIGs) as those having at least one SNP meeting Bonferroni correction using
univariate, multiple regression models. In stage 2, we evaluate aggregate PIG effects on trait, Q1, by modeling each
gene as a latent construct, which is defined by multiple common and rare variants, using the multivariate statistical
framework of structural equation modeling (SEM). In stage 1, we found that PIGs varied markedly between a
randomly selected replicate (replicate 137) and 100 other replicates, with the exception of FLT1. In stage 1,
collapsing rare variants decreased false positives but increased false negatives. In stage 2, we developed a good-
fitting SEM model that included all nine genes simulated to affect Q1 (FLT1, KDR, ARNT, ELAV4, FLT4, HIF1A, HIF3A,
VEGFA, VEGFC) and found that FLT1 had the largest effect on Q1 (bstd = 0.33 ± 0.05). Using replicate 137 estimates
as population values, we found that the mean relative bias in the parameters (loadings, paths, residuals) and their
standard errors across 100 replicates was on average, less than 5%. Our latent variable SEM approach provides a
viable framework for modeling aggregate effects of rare and common variants in multiple genes, but more elegant
methods are needed in stage 1 to minimize type I and type II error.

Background
The 1000 Genomes Project is an international public-
private consortium aiming to build the most detailed
map of human genetic variation with the overarching
goal to improve our understanding of the genetic contri-
bution to common human diseases. Initially launched in
2008, three pilot studies have been completed to test
multiple sequencing methods. Pilot Project 3 involved
sequencing the coding regions (exons) of 3,205 genes in
697 individuals from 7 populations, which revealed
24,487 rare and common genetic variants. The

sequencing data from Pilot Project 3 were used for
Genetic Analysis Workshop 17 (GAW17), and details of
this data set, including how the phenotypes were simu-
lated, can be found in Almasy et al. [1].
Although strategies have been developed to evaluate

the contribution of rare variants to disease susceptibility
in nonfamilial data, including collapsing methods, which
are reviewed by Dering et al. [2], approaches that evalu-
ate the combined or aggregate effects of rare and com-
mon variants together are limited. Thus in this paper
we aim to evaluate the aggregate effects of rare and
common single-nucleotide polymorphisms (SNPs) in
genes on the simulated quantitative trait Q1 using the
Pilot Project 3 data (unrelated subjects). In stage 1 we
use multiple regression methods (with and without
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collapsing rare variants) to identify potentially interest-
ing genes (PIGs); in stage 2, we use a latent variable
structural equation modeling (SEM) approach to evalu-
ate aggregate effects of rare and common variants in
PIGs on Q1. During our initial analyses, we were
blinded to the “answers” of the simulated model. In post
hoc analyses, we used knowledge that 39 SNPs in 9
genes, primarily in the vascular endothelial growth fac-
tor (VEGF) pathway, were simulated to be associated
with Q1.

Methods
Data cleaning and preparation: phenotype and genotype
variables
We first examined the distribution of Q1, which we
arbitrarily chose from the three simulated quantitative
phenotypes available (see Almasy et al. [1]), in a ran-
domly chosen replicate (replicate 137) of the unrelated
individuals from the GAW17 data using SAS, v. 9.1
(SAS Institute Inc., Cary, North Carolina). Visual inspec-
tion of histograms and quantile-quantile (Q-Q) plots
and Shapiro-Wilk and Kolmogorov-Smirnov tests indi-
cated that Q1 was essentially normally distributed. Sum-
mary statistics and Mendelian inheritance errors were
evaluated using PLINK, v. 1.07 [3].

Stage 1: statistical methods for regression-based analyses
We evaluated the association between each SNP as an
additive model (0, 1, or 2 copies of the minor allele)
and Q1 using linear regression models adjusted for all
the covariates provided in the GAW17 data set (Age,
Sex, Smoking, population [Pop1]) using PLINK, v.
1.07. In addition, we collapsed rare variants (minor
allele frequency [MAF] < 0.05) in each gene using the
indicator coding method [2], which assumes equal
weighting of each rare variant. We also adjusted the
models for population substructure using principal
components (PCs). PCs were generated using the cen-
tralized scoring matrix method of Qin et al. [4,5] in
MATLAB (MathWorks, Boston, Massachusetts). We
adjusted models for multiple PCs and found that
adjusting for 10 or 12 PCs minimized the number of
false positives (see Results section, Table three, and
additional details in Qin et al. [5]).

Stage 2: statistical methods for latent variable structural
equation modeling
Our approach for modeling multiple common variants
in genes using latent constructs has been described pre-
viously [6]. Essentially, we let a latent variable (ovals in
Figure 1, e.g., FLT1) represent the overall variation in a
gene, which we formally describe by multiple SNPs (rec-
tangles in Figure 1, e.g., C13S522) in that gene. In terms
of notation, briefly, in latent variable structural equation

modeling (SEM), two general submodels are used: (1) a
measurement model that develops the relations (load-
ings; e.g., the arrow from FLT1 to C13S522 in Figure 1)
between the observed variables and the latent con-
structs; and (2) a structural model that develops the
relations (path coefficients; e.g., the arrow from PopStr
to FLT1 in Figure 1) between the latent variables. The
general form of the measurement model is:
y = Λyh + ε, (1)
where y is the p × 1 vector of observed variables, h is

the m × 1 vector of latent random variables, ε is the p ×
1 vector of measurement errors for y, and Λy is the p ×
n matrix of coefficients relating y to h.
The general form of the structural model imposes

constraints such that:
h = Βh + ζ, (2)
where Β is the m × m matrix of path coefficients and

ζ is the m × 1 vector of errors or disturbances in the
endogenous (dependent) latent variables.
The structural model can be modified by adding a q-

dimensional vector of covariates (x), an m × q matrix of
regression coefficients (Γ), and an m-dimensional vector
of intercepts (a):
h = a + Βh + Γx + ζ. (3)
Similar to our prior work using common variants to

describe overall variation in a gene [6,7], we used eigen-
values, scree plots, reliability, linkage disequilibrium
plots (Haploview, v. 4.2), and association results from
stage 1 to help select the most informative SNPs and
define parsimonious latent gene constructs. We per-
formed confirmatory factor analysis using a robust max-
imum-likelihood estimator, which provides test statistics
and standard errors robust to nonnormality, using
Mplus, v. 5.1 (Muthén and Muthén, Los Angeles, Cali-
fornia), to generate and test single latent gene construct
models, which included adjustment for covariates (Age,
Sex, Smoking) and population structure (modeled using
a latent variable defined by Pop1 and the top 12 PCs).
To assess the overall model goodness-of-fit, we used the
chi-square test, the comparative fit index (CFI), the root
mean-square error of approximation (RMSEA), and the
standardized root mean-square residual (SRMR) [8].
The chi-square test evaluates whether the covariance

matrix is equal to the model-implied covariance matrix
predicted by the parameters, but it is sensitive to sample
size and complexity. Thus, other fit indexes, including
the CFI, RMSEA, and SRMR, have been used to evaluate
model fit [8]. The CFI is relatively insensitive to sample
size and model complexity, and CFI ≥ 0.95 and CFI ≥
0.90 suggest good and acceptable fit, respectively [9].
The RMSEA is less sensitive to sample size and favors
more parsimonious models. An RMSEA ≤ 0.06 repre-
sents good fit, and an RMSEA ≤ 0.10 yields acceptable
fit [9]. An SRMR ≤ 0.08 represents a good fit, and an
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SRMR < 0.10 represents an acceptable fit [8,9]. We eval-
uated the performance of the SEM model by calculating
the mean relative bias in the parameters and their stan-
dard errors across 100 replicates (replicates 99–136 and
138–200) available in the GAW17 data [1]. All p-values
are from two-sided tests.

Results
Without knowledge of the underlying simulated model
and using a randomly selected replicate (replicate 137),
we evaluated potential associations between each SNP
and trait Q1 in stage 1. We found that several genes
had a least one SNP meeting or exceeding the Bonfer-
roni-corrected level with (p ≤ 8.33 × 10−6) and without
(p ≤ 2.04 × 10−6) collapsing rare variants (MAF < 0.05)
(Table 1), but the most significant associations were

observed with common (C13S522, C13S523) and rare
(C1S3524) variants in FLT1 (Table 2).
In stage 2, when building the FLT1 construct using

replicate 137, we found that adding rare variants to the
common variants improved the model fit (CFI = 0.90,
RMSEA = 0.03, and SRMR = 0.08 in Figure 1A vs. CFI
= 0.96, RMSEA = 0.02, and SRMR = 0.05 in Figure 1B),
improved construct reliability (Cronbach’s a: 0.40 (A)
vs. 0.53 (B)), and increased the variance explained in Q1
(R2: 0.30 ± 0.04 (A) vs. 0.36 ± 0.04 (B)). In a larger SEM
(Figure 2) with 6 genes (26 SNPs) and with population
structure represented by a latent variable (PopStr), we
found that the path coefficient of FLT1 on Q1 (bstd =
0.49 ± 0.04) was slightly lower than that in the reduced
model (Figure 1B: bstd = 0.43 ± 0.05), but FLT1
remained the gene most strongly associated with Q1,

Figure 1 Modeling the aggregate effects of common and rare variants in FLT1 using latent variable structural equation modeling.
Adding rare variants (B) to the FLT1 latent construct composed of common variants (A) improved the model fit (A: CFI = 0.90, RMSEA = 0.03,
SRMR = 0.08; vs. B: CFI = 0.96, RMSEA = 0.02, SRMR = 0.05) and the variance explained in Q1 (R2: 0.36 ± 0.04 (B) vs. 0.30 ± 0.04 (A)). Standardized
parameters and standard errors are shown above the arrows. Yellow, rare variant; blue, population substructure (PopStr; principal component,
PC); red, gene; green, trait. * p ≤ 0.05; ** p ≤ 0.001. Residuals not shown for clarity.
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Table 1 Top potentially interests genes (PIGs) with SNPs associated with Q1 in replicate 137 of GAW17 exon sequencing data (unrelated individuals)

Gene Chromosome Total
Number of

SNPs

Distance
(bp)

Crude model Adjusted model 1a Adjusted model 2b

Number of SNPs
with p <

2.04 × 10−6

Number of
SNPs with
p < 0.10

Highest p
(SNP)

Number of SNPs
with p <

2.04 × 10−6

Number of
SNPs with
p < 0.10

Highest
p (SNP)

Number of
SNPs with p <
2.04 × 10−6

Number of
SNPs with
p < 0.10

Highest
p (SNP)

FLT1 13 35 16,389 2 (C13S522 n,
C13S523 n)

10 (8 n, 2 s) 3.41 × 10
−18

(C13S523)

3 (C13S522 n,
C13S523 n, C13S524

n)

11 (7 n, 4 s) 5.64 × 10−21

(C13S423)
2 (C13S522 n,
C13S523 n)

11 (7 n, 4 s) 2.10 × 10
−11

(C13S423)

FADS3 11 9 15,457 1 (C11S3071 n) 1 (1 n) 2.37 × 10−7

(C11S3071)
1 (C11S3071 n) 2 (1 n, 1 s) 1.33 × 10−7

(C11S3071)
1 (C11S3071 n) 1 (1 n) 8.68 × 10−7

(C11S3071)

C5ORF25 5 22 55,401 1 (C5S4371 n) 2 (1 n, 1 s) 3.99 × 10−5

(C5S4371)
1 (C5S4371 n) 2 (1 n, 1 s) 3.45 × 10−7

(C5S4371)
0 2 (1 n, 1 s) 4.56 × 10−5

(C5S4371)

AKAP13 15 163 223,193 1 (C15S4393 n) 10 (8 n, 2 s) 1.58 × 10−6

(C15S4393)
1 (C15S4393 n) 11 (8 n, 3 s) 1.37 × 10−6

(C15S4393)
0 14 (10 n,

4s)
3.89 × 10−5

(C15S4393)

OR2T34 1 16 495 3 (C1S11528 n,
C1S11529 s,
C1S11541 n)

11 (8 n, 3 s) 8.06 × 10−9

(C1S11541)
3 (C1S11528 n,
C1S11529 s,
C1S11541 n)

11 (8 n, 3 s) 2.80 × 10−10

(C1S11541)
0 6 (3 n, 3s) 3.28 × 10−4

(C1S11541)

a Adjusted for Age, Sex, Smoking, Pop1.
b Adjusted for Age, Sex, Smoking, Pop1 and top 12 principal components (PCs).
c n=nonsynonymous SNP; s=synonymous SNP
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Table 2 Select >FLT1 SNPs in GAW17 exon sequencing data (replicate 137; unrelated individuals) and associations with Q1

SNP Minor allele frequency Crude model Adjusted model 1a Adjusted model 2b Adjusted model 3c Adjusted model 4d

b (SE) p b (SE) p b (SE) p b (SE) p b (SE) p

C13S320 0.0014 1.18 (0.71) 0.0954 0.81 (0.67) 0.2227 0.78 (0.67) 0.2438 0.96 (0.65) 0.1375 0.96 (0.65) 0.1385

C13S399 0.0007 0.30 (1.00) 0.7676 0.13 (0.95) 0.8947 0.10 (0.95) 0.9145 −0.02 (0.92) 0.9819 −0.07(0.92) 0.9383

C13S431 0.0172 0.80 (0.21) 1.06 × 10−4 0.66 (0.19) 6.94 × 10-4 0.69 (0.20) 4.72 × 10−4 0.62 (0.22) 5.39 × 10−3 0.59 (0.22) 8.07 × 10−3

C13S458 0.0014 1.84 (0.71) 9.38 × 10−3 1.32 (0.67) 0.0490 1.29 (0.67) 0.0552 1.30 (0.65) 0.0465 1.32 (0.65) 0.0432

C13S479 0.0007 0.22 (1.00) 0.8263 0.39 (0.94) 0.6780 0.42 (0.94) 0.6546 0.29 (0.91) 0.7500 0.37 (0.91) 0.6821

C13S505 0.0007 −0.14 (1.00) 0.8926 0.25 (0.94) 0.7933 0.23 (0.95) 0.8094 0.34 (0.91) 0.7101 0.41 (0.92) 0.6583

C13S514 0.0007 1.03 (1.00) 0.3052 1.05 (0.94) 0.2660 1.08 (0.94) 0.2507 1.43 (0.91) 0.1173 1.43 (0.91) 0.1172

C13S522 0.0280 1.14 (0.16) 2.0 × 10−12 1.12 (0.15) 1.7 × 10−13 1.12 (0.15) 2.1 × 10−13 0.96 (0.16) 1.12 × 10−9 0.98 (0.16) 9.3 × 10−10

C13S523 0.0667 0.94 (0.11) 3.4 × 10−18 0.96 (0.10) 3.3 × 10−21 0.96 (0.10) 5.6 × 10−21 0.81 (0.12) 1.9 × 10−11 0.81 (0.12) 2.1 × 10−11

C13S524 0.0043 1.68 (0.41) 3.7 × 10−5 1.98 (0.38) 2.66 × 10−7 1.97 (0.38) 3.17 × 10−7 1.58 (0.38) 3.12 × 10−5 1.59 (0.38) 3.04 × 10−5

C13S547 0.0007 0.08 (1.00) 0.9330 0.54 (0.94) 0.5652 0.57 (0.95) 0.5457 0.70 (0.91) 0.4443 0.69 (0.91) 0.4501

C13S557 0.0072 0.92 (0.32) 3.63 × 10−3 0.90 (0.30) 2.78 × 10−3 0.89 (0.30) 2.97 × 10−3 0.69 (0.29) 0.0186 0.70 (0.29) 0.0171

C13S567 0.0007 0.43 (1.00) 0.6694 0.27 (0.94) 0.7758 0.29 (0.95) 0.7564 0.13 (0.92) 0.8837 0.15 (0.91) 0.8673
a Adjusted for Age and Smoking.
b Adjusted for Age, Smoking, Sex, and Pop1.
c Adjusted for Age, Smoking, Sex, Pop1 and top 10 principal components (PCs).
d Adjusted for Age, Smoking, Sex, Pop1 and top 12 PCs.
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followed by SPHKAP, LRRN2, C5ORF25, and FADS3.
Genes AKAP13 and OR2T34 were not associated with
Q1. Population structure was not significantly associated
with Q1 or with genes where paths are not shown.
In post hoc analyses, we found that the list of PIGs

varied markedly across replicates (99–136 and 138–
200), with the exception of FLT1, which had at least one
SNP in all 100 replicates exceeding the Bonferroni-cor-
rected p-value in models adjusted for 10 or 12 PCs, and
with and without rare variants collapsed. KDR was the
next most consistent PIG, which was identified in 12
and 20 of the 100 replicates when rare variants were
and were not collapsed, respectively; the results were
the same when adjusting for 10 and 12 PCs.
We obtained the answers to the GAW17 simulation

model to better understand the performance of our
stage 1 approach and to develop a stage 2 model that
would more closely reflect the simulated model. The

answers revealed that 39 SNPs in 9 genes (FLT1, FLT4,
KDR, ARNT, ELAVL4, HIF1A, HIF3A, VEGFA, VEGFC),
primarily in the VEGF pathway, were simulated to be
associated with Q1.
With regard to stage 1 performance, we found that

the number of false-positive genes decreased with
adjustment for increasing numbers of PCs. As shown in
Table 3, the number of false-positive genes was lower
when rare variants were collapsed (8 PCs: μ [mean] =
1.40, SD = 2.38; 10 PCs: μ = 1.25, SD = 2.35; 12 PCs: μ
= 1.20, SD = 2.26) versus not collapsed (8 PCs: μ = 6.46,
SD = 11.99; 10 PCs: μ = 5.69, SD = 11.38; 12 PCs: μ =
5.43, SD = 11.20). The number of true-positive and
false-negative genes was similar for models adjusted for
10 and 12 PCs and when rare variants were and were
not collapsed (Table 3). Relaxing multiple test criteria to
p ≤ 1.56 × 10−6 (which reflects Bonferroni correction for
the total number of genes) did not materially improve

Figure 2 Modeling the aggregate effects of common and rare variants in multiple potentially interesting genes (without knowledge
of the GAW17 answers) using latent variable structural equation modeling. Model of the associations between 7 putative genes (26 SNPs)
and Q1 (Q1 R2 = 0.36, CFI = 0.90, RMSEA = 0.05, SRMR = 0.07). * p ≤ 0.05; ** p ≤ 0.001. Residuals not shown for clarity.
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the number of true-positive genes when rare variants
were collapsed (not shown). Although we were most
interested in identifying causal genes in stage 1, we note
that the number of false-positive SNPs over the 100
replicates decreased with adjustment for increasing
numbers of PCs (Pop1: μ = 58.74, SD = 36.34; 8 PCs: μ
= 6.68, SD = 12.38; 10 PCs: μ = 5.89, SD = 11.76; 12
PCs: μ = 5.61, SD = 11.57). The numbers of false-nega-
tive SNPs were similar when adjusting for 10 PCs (μ =
36.31, SD = 1.06) and 12 PCs (μ = 36.32, SD = 1.05)
with most replicates correctly identifying FLT1 SNPs
C13S522 and C13S523 (not shown).
In regards to building the Stage 2 model, because the

GAW17 answers provided only a list of the nine genes
simulated to be associated with Q1, we used the path-
way database of the Kyoto Encyclopedia of Genes and
Genomes (KEGG) (http://www.genome.jp/kegg/pathway.
html; VEGF Signaling, Cytokine-Cytokine Receptor
Interaction, Pathways in Cancer) to better understand
the biological relationships between the nine genes. We
developed a good-fitting model (CFI = 0.90, RMSEA =
0.04, SRMR = 0.03) that included all nine genes simu-
lated to affect Q1 (Figure 3). The variance explained in
Q1 (R2 = 0.42) was greater than in prior models. FLT1
remained the gene most strongly associated with Q1,
followed by ARNT, VEGFA, KDR, VEGFC, FLT4, and
HIF3A. Smoking was simulated to be associated with
KDR, but we observed only a marginal association (bstd
= 0.05 ± 0.02, p = 0.08; not shown) and found that
Smoking was more highly associated with HIF3A and
ELAVL4. Modeling all nine genes simultaneously
revealed that HIF1A was associated with VEGFC but
that ELAVL4 and HIF1A were not associated with Q1.
Removing paths designated by a dashed line (Figure 3)
resulted in a slightly improved model fit (CFI = 0.91,
RMSEA = 0.04, SRMR = 0.02), but the magnitude of the
paths from genes to Q1 remained similar.
To evaluate the performance of the stage 2 SEM

model, we used estimates from a randomly selected
replicate (replicate 137) to represent population values

(because the GAW17 answers did not contain standar-
dized estimates for aggregate gene effects that we could
directly compare to) and compared these population
values to estimates from 100 replicates (replicates 99–
136 and 138–200) available in the GAW17 data [1]. We
found that the mean relative bias (MRB) in the para-
meters and in the standard errors across 100 replicates
was 4.27% and 4.69%, respectively. The MRBs in stan-
dardized loadings and residuals were 1.47% for Λ, 0.09%
for ε, and 0.57% for ζ; the MRBs in the standard errors
(SEs) were 0.32% for Λ, 0.98% for ε, and 2.19% for ζ.
The MRB was generally similar between common and
rare variants. For example, in the FLT1 common SNP
C13S523 (MAF = 0.07) and the FLT1 rare SNP
C13S524 (MAF = 0.004), the MRB in Λ and the SE of Λ
were 0.35% in C13S523, 0.62% in C13S524, and 0.33%
in C13S523 vs. 0.98% in C13S524. The MRB of ε was
0.31% in C13S523 and 0.22% in C13S524, and the MRB
of the SE of ε was 0.63% in C13S523 and 0.20% in
C13S534. The largest bias was observed in the path
coefficients (b = 19.9%; SE of b = 9.79%), which was
quite severe in some cases, such as the HIF1A path
coefficient, where the bias reached 67.94%. Interestingly,
the post hoc analysis revealed that genes represented by
private variants, such as HIF1A, that were associated
with Q1 in replicate 137 were not significantly asso-
ciated with Q1 in most replicates. Also, the effects of
covariates (Age, Smoking, Sex, Pop1, PCs) varied mark-
edly across replicates. Model fit, however, was generally
consistent across replicates, with the average CFI,
RMSEA, and RMSR being 0.91, 0.04, and 0.02,
respectively.

Discussion
In stage 1, adjusting for 10 or 12 PCs (see also Qin et
al. [5]) and collapsing rare variants using the indicator
coding method decreased the number of false-positive
genes by about 78% (1.2 vs. 5.4), on average, but the
number of false-negative genes remained high regard-
less of whether rare variants were collapsed or not

Table 3 True-positive (TP), false-positive (FP), and false-negative (FN) genes for Q1 over 100 replicates (99–136 and
138–200) in GAW17 exon sequencing data (unrelated individuals)

Adjusted model 1a Adjusted model 2b Adjusted model 3c Adjusted model 4d Adjusted model 5e

TP FP FN TP FP FN TP FP FN TP FP FN TP FP FN

Mean 1.80 43.48 7.20 1.23 5.69 7.77 1.23 5.43 7.77 1.13 1.25 7.87 1.13 1.20 7.87

Standard deviation 0.72 26.78 0.72 0.42 11.38 0.42 0.42 11.20 0.42 0.34 2.35 0.34 0.34 2.26 0.34

Range 1–4 2–122 5–8 1–2 0–43 7–8 1–2 0–42 7–8 1–2 0–14 7–8 1–2 0–14 7–8
a Adjusted for Age, Smoking, Sex, and population (Pop1).
b Adjusted for Age, Smoking, Sex, Pop1 and top 10 PCs.
c Adjusted for Age, Smoking, Sex, Pop1 and top 12 PCs.
d Rare variants collapsed, adjusted for Age, Smoking, Sex, Pop1 and top 10 PCs.
e Rare variants collapsed, adjusted for Age, Smoking, Sex, Pop1 and top 12 PCs.
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(7.9 vs. 7.8). This is striking because we missed identi-
fying about 87% of the simulated causal genes and cor-
rectly identified only one gene (11.1%; FLT1) over all
100 replicates (replicates 99–136 and 138–200). Our
stage 2 SEM results were able to confirm the impor-
tance of FLT1, because irrespective of the other genes
included in the model (i.e., the false-positive model in
Figure 2 and the answer-driven model in Figure 3), the
FLT1 construct consistently had the strongest associa-
tion with Q1 in replicate 137 and across all other
replicates (replicates 99–136 and 138–200). We found
that the MRB in the answer-driven stage 2 SEM mod-
el’s parameters and standard errors across 100 repli-
cates was less than 5%. In addition, our stage 2 SEM
model (Figure 3) revealed relationships between genes
(e.g., ARNT and FLT1) and between covariates and
genes (e.g., Smoking and ELAVL4) that were not

discussed in the GAW17 answers. Thus, we believe
that modeling all nine genes simultaneously together
with the relevant environmental factors and population
structure in a hierarchical manner that better reflects
the underlying biology using latent variable SEM pro-
vides an improved understanding of each gene’s rele-
vance in the disease pathophysiology compared to
standard multiple regression methods.

Conclusions
Our latent gene construct approach provides a viable
framework for evaluating the aggregate effects of rare
and common variants in multiple genes on a trait while
adjusting for population substructure; however, more
elegant methods are needed in stage 1 to minimize false
positives and concomitantly improve identification of
true-positive genes.

Figure 3 Modeling the aggregate effects of common and rare variants in multiple genes (with knowledge of the answers) using
latent variable structural equation modeling. Model of the associations between 9 genes (19 SNPs) simulated to affect Q1 (Q1 R2 = 0.42, CFI
= 0.90, RMSEA = 0.04, SRMR = 0.03). * p < 0.10; ** p ≤ 0.05; *** p ≤ 0.01. Residuals and paths from population structure not shown for clarity.
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