Background
ALS is a fatal, rapidly progressive neurodegenerative disorder affecting motor neurons in the CNS; this results in muscle weakness which progresses to paralysis and death from respiratory failure. There is currently no effective cure as its pathophysiology is poorly understood; however, aggregates comprising misfolded proteins are known to be characteristic of the disease. These protein aggregations could elicit ER stress and subsequently the unfolded protein response (UPR). Initially, this response is cytoprotective as it inhibits protein synthesis thereby preventing further protein accumulation until the stress resolves, however if prolonged it can stimulate apoptosis. This study attempts to clarify the role of ER stress and the UPR in ALS.