Benton T, Chen T, McEntee M, Fox B, King D, Crombie R, Thomas TC, Bebbington C: The use of UCOE vectors in combination with a preadapted serum free, suspension cell line allows for rapid production of large quantities of protein. Cytotechnology. 2002, 38 (1-3): 43-46.
Article
PubMed
CAS
PubMed Central
Google Scholar
Mirkovitch J, Mirault ME, Laemmli UK: Organization of the higher-order chromatin loop: specific DNA attachment sites on nuclear scaffold. Cell. 1984, 39 (1): 223-232.
Article
PubMed
CAS
Google Scholar
Branda CS, Dymecki SM: Talking about a revolution: The impact of site-specific recombinases on genetic analyses in mice. Dev Cell. 2004, 6 (1): 7-28.
Article
PubMed
CAS
Google Scholar
Golic MM, Rong YS, Petersen RB, Lindquist SL, Golic KG: FLP-mediated DNA mobilization to specific target sites in Drosophila chromosomes. Nucleic Acids Res. 1997, 25 (18): 3665-3671.
Article
PubMed
CAS
PubMed Central
Google Scholar
Groth AC, Fish M, Nusse R, Calos MP: Construction of transgenic Drosophila by using the site-specific integrase from phage phiC31. Genetics. 2004, 166 (4): 1775-1782.
Article
PubMed
CAS
PubMed Central
Google Scholar
O'Gorman S, Fox DT, Wahl GM: Recombinase-mediated gene activation and site-specific integration in mammalian cells. Science. 1991, 251 (4999): 1351-1355.
Article
PubMed
Google Scholar
Voziyanov Y, Pathania S, Jayaram M: A general model for site-specific recombination by the integrase family recombinases. Nucleic Acids Res. 1999, 27 (4): 930-941.
Article
PubMed
CAS
PubMed Central
Google Scholar
Voziyanov Y, Konieczka JH, Stewart AF, Jayaram M: Stepwise manipulation of DNA specificity in Flp recombinase: progressively adapting Flp to individual and combinatorial mutations in its target site. J Mol Biol. 2003, 326 (1): 65-76.
Article
PubMed
CAS
Google Scholar
Wirth D, Gama-Norton L, Riemer P, Sandhu U, Schucht R, Hauser H: Road to precision: recombinase-based targeting technologies for genome engineering. Curr Opin Biotechnol. 2007, 18 (5): 411-419.
Article
PubMed
CAS
Google Scholar
Chen L, Xie Z, Teng Y, Wang M, Shi M, Qian L, Hu M, Feng J, Yang X, Shen B, et al: Highly efficient selection of the stable clones expressing antibody-IL-2 fusion protein by a dicistronic expression vector containing a mutant neo gene. J Immunol Methods. 2004, 295 (1-2): 49-56.
Article
PubMed
CAS
Google Scholar
Sautter K, Enenkel B: Selection of high-producing CHO cells using NPT selection marker with reduced enzyme activity. Biotechnol Bioeng. 2005, 89 (5): 530-538.
Article
PubMed
CAS
Google Scholar
Niwa H, Yamamura K, Miyazaki J: Efficient selection for high-expression transfectants with a novel eukaryotic vector. Gene. 1991, 108 (2): 193-199.
Article
PubMed
CAS
Google Scholar
Westwood AD, Rowe DA, Clarke HR: Improved recombinant protein yield using a codon deoptimized DHFR selectable marker in a CHEF1 expression plasmid. Biotechnol Prog. 2010, 26 (6): 1558-1566.
Article
PubMed
CAS
Google Scholar
Kaufman RJ, Sharp PA: Amplification and expression of sequences cotransfected with a modular dihydrofolate reductase complementary dna gene. J Mol Biol. 1982, 159 (4): 601-621.
Article
PubMed
CAS
Google Scholar
Kaufman RJ, Davies MV, Wasley LC, Michnick D: Improved vectors for stable expression of foreign genes in mammalian cells by use of the untranslated leader sequence from EMC virus. Nucleic Acids Res. 1991, 19 (16): 4485-4490.
Article
PubMed
CAS
PubMed Central
Google Scholar
Milbrandt JD, Heintz NH, White WC, Rothman SM, Hamlin JL: Methotrexate-resistant Chinese hamster ovary cells have amplified a 135-kilobase-pair region that includes the dihydrofolate reductase gene. Proc Natl Acad Sci U S A. 1981, 78 (10): 6043-6047.
Article
PubMed
CAS
PubMed Central
Google Scholar
Ng SK, Wang DI, Yap MG: Application of destabilizing sequences on selection marker for improved recombinant protein productivity in CHO-DG44. Metab Eng. 2007, 9 (3): 304-316.
Article
PubMed
CAS
Google Scholar
Ng SK, Lin W, Sachdeva R, Wang DI, Yap MG: Vector fragmentation: characterizing vector integrity in transfected clones by Southern blotting. Biotechnol Prog. 2010, 26 (1): 11-20.
Article
PubMed
CAS
Google Scholar
Ng SK, Tan TR, Wang Y, Ng D, Goh LT, Bardor M, Wong VV, Lam KP: Production of Functional Soluble Dectin-1 Glycoprotein Using an IRES-Linked Destabilized-Dihydrofolate Reductase Expression Vector. PLoS One. 2012, 7 (12): e52785-
Article
PubMed
CAS
PubMed Central
Google Scholar
Hoffman MA, Palmenberg AC: Revertant analysis of J-K mutations in the encephalomyocarditis virus internal ribosomal entry site detects an altered leader protein. J Virol. 1996, 70 (9): 6425-6430.
PubMed
CAS
PubMed Central
Google Scholar
Bochkov YA, Palmenberg AC: Translational efficiency of EMCV IRES in bicistronic vectors is dependent upon IRES sequence and gene location. Biotechniques. 2006, 41 (3): 283-284, 286, 288 passim.
Article
PubMed
CAS
Google Scholar
Gurtu V, Yan G, Zhang G: IRES bicistronic expression vectors for efficient creation of stable mammalian cell lines. Biochem Biophys Res Commun. 1996, 229 (1): 295-298.
Article
PubMed
CAS
Google Scholar