Skip to main content

Decision tree for selection of suitable cultivation parameters for mammalian cell culture processes

Background

Development of bioprocesses for mammalian cells has to deal with different bioreactor types and scales. Bio-reactors might be intended for seed train and production, research, process development, validation or transfer purposes. During these activities, not only the problem of up- and downscaling might lead to failure of repro-ducibility, but also the use of different bioreactor geometries and operation conditions. In such cases, the criteria for bioreactor design and process transfer should be re-evaluated in order to avoid an erroneous transfer of cultivation parameters.

Concept

For selection of process conditions several questions can be asked:

  • Type and scale of the intended cultivation system

  • Which data are required (cell specific parameters, specific data for the cultivation system)?

  • Are appropriate data e.g. for cell growth, substrate uptake, medium composition available?

  • For which cultivation systems have these data been determined?

  • Are data on power input, mixing time, oxygen transfer etc. available?

  • Which methods can be used to determine or estimate the above mentioned parameters?

For selection and evaluation of suitable cultivation parameters a decision tree (Figure 1) has been formulated to provide a guideline for design of mammalian cell culture processes. References for process transfer strategies are given for the following cases:

  • Scale similar and power imput similar: [13]

  • Scale similar and power imput similar: [46]

  • Scale up and power imput similar: [7, 8]

  • Scale up and power imput similar: [4, 9, 10]

Figure 1
figure 1

Decision tree for selection of suitable cultivation parameters µ - growth rate, OTR - oxygen transfer rate, OUR - oxygen uptake rate, k L a - volume specific mass transfer coefficient.

References

  1. Platas OB, Jandt U, PhanLd M, Villanueva ME, Schaletzky M, Rath A, Freund S, Reichl U, Skerhutt E, Scholz S, Noll ThSandig V, Pörtner R, Zeng AP: Evaluation of criteria for bioreactor comparison and operation standardisation for mammalian cell culture. EngLifeSci. 2012, 12 (5): 518-528.

    Google Scholar 

  2. Minow B, Tschoepe S, Regner A, Populin M, Reiser S, Noack C, Neubauer : Biological performance of two different 1000 L single-use bioreactors applying a simple transfer approach. Eng Life Sci. 2014, 14 (3): 283-291.

    CAS  Article  Google Scholar 

  3. Minow B, Seidemann J, Tschoepe S, Gloeckner A, Neubauer P: Harmonization and characterization of different single-use bioreactors adopting a new sparger design. Eng Life Sci. 2014, 14 (3): 272-282.

    CAS  Article  Google Scholar 

  4. Kaiser St, Eibl D: Dynamic Single-Use Bioreactors Used in Modern Liter- and m3- Scale. Biotechnological Processes: Engineering Characteristics and Scaling Up.AdvBiochemEngBiotechnol. 2014, 138: 1-44.

    Google Scholar 

  5. Greller G, Eibl D: Single-use wave-mixed versus stirred bioreactors for insect-cell/BEVS-based protein expression at benchtop scale. Eng Life Sci. 2014, 14 (3): 264-271.

    Article  Google Scholar 

  6. Goedde A, Reiser S, Russ K, Krüger O, Cayli A, Wagner R: Characterisation of two Single-Use Bioreactors for Mammalian Cell Culture Processes. Oktober 2010, [http://rentschler.de/fileadmin/Downloads/Poster/Rentschler-Poster-BMD_Summit-2010.pdf]

  7. Xing Z, Kenty BM, Li ZJ, Lee SS: Scale-up analysis for a CHO cell culture process in large-scale bioreactors. BiotechnolBioeng. 2009, 103 (4): 733-746.

    CAS  Google Scholar 

  8. Yang JD, Lu C, Stasny B, Henley J, Guinto W, Gonzalez C, et al: Fed-batch bioreactor process scale-up from 3-L to 2,500-L scale for monoclonal antibody production from cell culture. BiotechnolBioeng. 2007, 98 (1): 141-154.

    CAS  Google Scholar 

  9. Minow B, Rogge P, Thompson K: Implementing a Fully Disposable MAb Manufacturing Facility. 2012, [http://www.bioprocessintl.com/manufacturing/antibody-non-antibody/implementing-a-fully-disposable-mab-manufacturing-facility-331156/]

    Google Scholar 

  10. Minow B: Fast Track API Manufacturing in a 1000-L Single Use Facility Facilitating a Platform Process and a Simplified Scale-up Approach. JAACT 2012, Nagoya, Japan. 2012, 28. November 2012

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralf Pörtner.

Rights and permissions

This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pörtner, R., Kern, S. & Eibl, D. Decision tree for selection of suitable cultivation parameters for mammalian cell culture processes. BMC Proc 9, P45 (2015). https://doi.org/10.1186/1753-6561-9-S9-P45

Download citation

  • Published:

  • DOI: https://doi.org/10.1186/1753-6561-9-S9-P45

Keywords

  • Decision Tree
  • Cultivation System
  • Process Transfer
  • Power Input
  • Operation Condition